“We use state-of-the-art science to understand items from 1,500 years ago”

Marcos Martinón-Torres, Professor of Archaeology at the University of Cambridge (UK) and a world-renowned archaeologist and researcher, applies cutting-edge techniques to our archaeological findings at Rumichaca-Pasto project in Colombia.

The Rumichaca-Pasto road corridor, managed by Concesionaria Vial Unión del Sur (Sacyr Concesiones), is one of Sacyr's most relevant projects in Colombia. 

During the construction process, we discovered hundreds of archaeological remains that have been examined by Marcos Martinón-Torres.

Martinón-Torres, curator of the largest exhibition in Europe of the terracotta warriors of Xi'an (China), coordinated the analysis of these items with David Alejandro Pérez Fernández, Head of the Preventive archaeology program for Rumichaca-Pasto project between 2016 and 2023. Currently, he oversees archaeological tasks at the Unión vial Camino del Pacifico project, another Sacyr contract in Colombia. 

 



Martinón-Torres; Lina Campos Quintero (left), archaeologist at the Gold Museum; Kate Klesner, research associate with Martinon's team, and David Alejandro.

 

"The Nariño region has vast archaeological wealth. The discoveries made in the Vial Unión del Sur project are extraordinary and among the largest in Colombia's recent history. Excavations have unearthed pre-Hispanic tombs that provided us thousands of objects, revealing the richness and diversity of their technologies and funerary rituals," says Martinón-Torres.

 "Thanks to the excellent work of Sacyr's archaeologists, we have been able to carry out a very important part of our Reverseaction project, funded by the European Research Council. This project aims to explain how stateless societies mastered complex and luxurious technologies, such as goldsmithing, textile production, and precious stones. Items of this kind are usually associated with kings or pharaohs," explains the researcher.

"Including the perspective of European researchers and advanced scientific techniques is helps expand the possibilities of interpretation of the archaeological materials found during the archaeological excavations at the Rumichaca-Pasto widening project. Their insights help establish deep reflections about the ancient of this region, their way of life and how they connect to the technology at the time applied to ceramic arts", explains David Alejandro. 

 


 

"We carry out scientific analyses using various techniques from different scientific disciplines (natural, geological, and physical) to better understand objects that are 1,500 years old," explains Martinón-Torres. 

The three main techniques he uses are:

-    Chemical analysis on ceramic objects to understand the clays and pigments used.
-    Scanning electron microscopy to observe the items’ microstructure.
-    3D modeling to study their morphology and better understand their manufacturing processes.

"The collaboration with David Pérez and the Sacyr archaeologists has been incredibly enriching and synergistic. From the beginning, they have been open to sharing their discoveries," explains the archaeologist. 

"We were impressed by the professionalism of the archaeological record and the extent of excavations and items found. Upon our arrival, all the excavations were already completed. We have been able to add to our scientific contributions based on Sacyr's archaeological work," says Martinón-Torres.

 


 

"There is still much to do. As our project is currently planned, it will go on until 2026. We plan to return to Pasto at the beginning of next year to begin disseminating the results and take further steps. We will also develop our collaboration with the Gold Museum in Pasto, as well as with indigenous communities," this scientist says. 

The team has begun collaborating with native communities to better understand their history and integrate pre-Hispanic technologies into today's traditional crafts. "We can only do this work if we feel welcome and can contribute something to the local communities," he stresses. 

For example, Prof. Martinón-Torres’ team is collaborating with a community that is searching for clays for traditional pottery. Researchers compare these clays with those used thousands of years ago to better understand pigments used in the past. 

 


 

Kate Klesner, a postdoctoral research associate at the University of Cambridge and a member of Martinón-Torres' team, has worked with students from universities in Colombia to analyze these findings.

"The idea is to publish an article with Kate and Marcos; hopefully this year. The combined research reports amount to close to 4,000 pages, and they are an excellent groundwork for a book that will expand our knowledge about the human societies that inhabited this part of the world," says David Pérez.

According to Martinón-Torres, the excavations in this area are some of the most extensive and abundant known in the world.

 

The Casa Rosada is one of Argentina's most iconic buildings. Credit: Dennis Jarvis / Flickr

The 5 secrets of the Casa Rosada

The White Hall of the Casa Rosada is where special guests are received and international treaties are signed. Many false doors adorn its walls. Discover these and other secrets of this curious building, an emblematic symbol of Argentine history.

ISABEL RUBIO ARROYO | Tungsteno

 

Did you know that the Casa Rosada is not symmetrical due to the demolition of one of its parts? Why does it have a room full of false doors? What is the reason for its pink colour? We investigate the secrets of Argentina's seat of government, which was almost fitted with a great dome and hides priceless archaeological remains inside.

 

An asymmetrical masterpiece

 

The Casa Rosada is located in the historic centre of the Autonomous City of Buenos Aires. Its history begins in 1873, when the Palacio de Correos y Telégrafos (Palace of Posts and Telegraphs) was erected. A few years later, President Julio Argentino Roca dreamed of a definitive government palace. He designed it next to the Palacio de Correos. In 1886, the two buildings were joined by the majestic portico that now greets the Plaza de Mayo. Thus was born the Casa Rosada. More than half a century later, in 1938, the south wing was demolishedas a result of which the Casa Rosada is no longer symmetrical.

 

A hall full of false doors

 

The White Hall is where the most important acts of government take place. It is where official ceremonies are held, foreign dignitaries are received and important decisions for Argentina are made, such as the signing of international treaties. The balcony or high gallery that surrounds it hides a secret: it is adorned with false doors covered with mirrors. The aim is to create a sense of greater breadth and depth, enhancing the grandeur of the space. “Only one of the doors opens, the one located in the centre of the right-hand sector leading into the hall,” says the official website of the Casa Rosada.


 

The White Hall is the main hall of the Casa Rosada. Credit: Casa Rosada official website.

 

The mystery of its colour

 

The choice of pink for this emblematic building is often attributed to President Domingo Faustino SarmientoIt is said that Sarmiento, who assumed the presidency in 1868, used the mixture of white and red to symbolise the union of all the political sectors of the time. “According to some versions, the original method used to obtain the characteristic pink colour of the Casa de Gobierno was to mix lime with cow’s blood, a common technique at the time due to the water-repellent (to avoid moisture and filtrations) and fixing properties of the blood,” says the official website.

 

The dome that never was

 

The Casa Rosada was on the verge of having a majestic dome on its west façade. In 1907, the General Directorate of Architecture presented a project to transform the building's appearance. The idea was to construct a great dome that would symbolise grandeur and modernity. In the end, however, the project was never carried out. The reasons why it was left on the back burner of history are not documented.


 

The Casa Rosada was on the verge of having a majestic dome. Credit: Casa Rosada official website

 

The buried past of the Casa Rosada

 

At the beginning of the 20th century, excavations were carried out in the Patio de las Palmeras of the Casa Rosada and an unexpected discovery was made: rounded stones that, according to the renowned archaeologist Juan Bautista Ambrosetti, could be instruments used by the indigenous people of the area. Specifically, he suggested that they could be stones from boleadoras (a throwing weapon used mainly for hunting) or hatchets used by the Querandí people, indigenous South Americans who inhabited the Pampean region of present-day Argentina.

These are not the only mysteries hidden in the Casa Rosada. In fact, other surprising discoveries have been made under its floors. Most recently, in 2018, during the excavation of a pit for the installation of new lifts, ruins were found three metres underground. They belong to the Palace of the Viceroys of the Río de la Plata and date back to the 18th century. All these curiosities make the Casa Rosada more than just a government building. It is a unique place that attracts millions of tourists every year for its historical, cultural and architectural value.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Ruta 78 (Chile)

Ruta 78: Artificial intelligence applied to traffic enhancement

We are applying Artificial Intelligence with the startup Valerann to support traffic management on the San Antonio – Santiago (Chile) highway. This pilot project aims to implement new tools to positively impact the operation of our road P3, enhance road safety, increase the attractiveness of the P3 and increase the quality of assistance and interventions on the road.

We are applying Artificial Intelligence with the startup Valerann to support traffic management on the San Antonio – Santiago highway. This pilot project aims to implement new tools to positively impact the operation of our road P3, enhance road safety, increase the attractiveness of the P3 and increase the quality of assistance and interventions on the road.

To achieve this, technology enables us to leverage diverse data sources, utilizing artificial vision and predictive algorithms to detect incidents, improve response times, and optimize the use of Intelligent Transportation Systems infrastructure. As part of its implementation, the platform integrates a wide range of data from sources such as surveillance cameras, traffic flow data, navigation applications, social networks, and meteorological sources.

With these interconnected elements available, we can maximize the current infrastructure and data sources to detect, validate, and prioritize risks and incidents. This approach also allows us to combine data and operational insights to understand the overall road conditions, thereby improving user service and timely alerting of risks to drivers through the intelligent use of social networks, navigation applications, and variable message panels, ultimately delivering better customer service.

According to Alejandro Vera, Operations Manager of Ruta 78, "at this time, we are integrating data and deploying the system to observe its behavior. Once we complete this phase, starting this June, we will conduct calibrations and improvements to achieve our objectives and enhance the operation of the concession."

This pilot project is made possible through collaboration among Sacyr Concesiones teams in Chile and Spain, the San Antonio Santiago Highway Concessionaire – Route 78, and Sacyr's Department of Strategy, Innovation, and Sustainability.

 


 

Valerann was the winning startup in the 2023 Sacyr iChallenges Open Innovation program and the 13th edition of the Sacyr Innovation Awards, over 204 other project proposals submitted.

Valerann's technology enables the integration of data processed with Artificial Intelligence, specifically focusing on road transport to maximize available data effectively.
 

 

Neri Oxman excels in the field of materials ecology. Credit: Noah Kalina

Neri Oxman, the silkworm “whisperer”

How can humans and members of other species such as silkworms collaborate in the construction of objects, products and buildings? This is one of the questions that architect and designer Neri Oxman, founder of a renowned research group at the MIT Media Lab, is trying to answer.

ISABEL RUBIO ARROYO | Tungsteno

 

The Silk Pavilion I is an architectural structure created with a base woven by a robotic arm and the help of thousands of live silkworms. "We ordered 6,500 silkworms from an online silk farm. After four weeks of feeding, they were ready to spin with us," says Neri Oxman, the leader of the initiative. We investigate the most innovative projects of this 48-year-old Israeli-American architect, known for fusing architecture, design, biology and materials engineering.

 

From Henry Ford to Charles Darwin

 

Assembly lines have dictated a world made of parts, "framing the imagination of designers and architects who have been trained to think about their objects as assemblies," says Oxman. In contrast, the architect argues that assemblages of homogeneous material are not found in nature. She cites human skin as an example. "Our facial skins are thin with large pores. Our back skins are thicker, with small pores. One acts mainly as a filter, the other mainly as a barrier, and yet it is the same skin: no parts, no assemblies," she said in a TED talk.

Architects and designers face a dichotomy: that of working between the machine and the organism. Or as Oxman puts it, "between the chisel and the gene, between machine and organism, between assembly and growth, between Henry Ford and Charles Darwin." "My work, at its simplest level, is about uniting these two worldviews, moving away from assembly and closer into growth," she explains.

 

Oxman explores how digital fabrication technologies can interact with the biological world. Credit: TED

 

More than 6,000 silkworms weave the architecture of the future

 

It is in this fusion that one can understand her Silk Pavilion I, in which biological silk and robotically spun silk intermingle. To construct it, she and her collaborators carefully placed 6,500 worms on the bottom edge of a silk frame spun by a robotic arm. The silkworms spun their silk, mated and laid eggs. In little more than two to three weeks, "6,500 silkworms weave 6,500 kilometres."

In this work, her two visions of the world are integrated: "One spins silk out of a robotic arm, the other fills in the gaps." "If the final frontier of design is to breathe life into the products and the buildings around us, to form a two-material ecology, then designers must unite these two worldviews," she says.

Later, the architect and her team developed the Silk Pavilion II. Commissioned for the Material Ecology exhibition at the Museum of Modern Art in New York, the structure is six metres high and five metres wide. "Ten days of co-creation among silkworms, humans and a robotic loom-like jig resulted in a structure made of silk threads longer than the diameter of planet Earth," explain its creators.

 

More than 6,000 worms were involved in the construction of the Silk Pavilion. Credit: Oxman

 

Fallen leaves, apple skins and shrimp shells

 

Oxman has become a prominent figure in the field of material ecology. This discipline integrates technological advances in computational design, synthetic biology and digital fabrication to create revolutionary design solutions inspired by nature. Her team in the Mediated Matter group at the MIT Media Lab experiments with everything from moss to mushrooms to apples.

One of her most striking projects is Aguahoja I, which aimed to develop a robotic platform for 3D printing biomaterials. The result is a pavilion made of 5,740 fallen leaves, 6,500 apple skins and 3,135 shrimp shells. Also noteworthy is her synthetic apiary, which aims to combat the decline of bee populations. This initiative proposes the creation of controlled, indoor environments that simulate ideal conditions for bees to thrive throughout the year.

Oxman's work has been seen on fashion catwalks and at design fairs. They have also been exhibited in prestigious museums around the world, including the Museum of Modern Art and the San Francisco Museum of Modern Art. In addition to winning several awards (including the Cooper Hewitt Design Award and the Vilcek Prize in Design), her creations led Jenny Lam, a leading technology designer, to describe Oxman as a contemporary Leonardo da Vinci.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Bjarke Ingels is considered one of the most influential architects of his generation. Credit: Epizentrum / LEGO

The Danish architect who built a giant LEGO house

For LEGO lovers, there is only one emblematic building: LEGO House. Behind this masterpiece of modern architecture is BIG, the iconic architectural firm founded by Bjarke Ingels. We explore the life and work of one of the world’s most influential architects.

ISABEL RUBIO ARROYO | Tungsteno

 

From a young age, Danish architect Bjarke Ingels dreamed of becoming a cartoonist. Hoping to improve his drawing skills, he enrolled at the Royal School of Architecture in 1993.

“Drawing is my superpower. It was during my childhood: in kindergarten, in high school. I was always the best at drawing,” he said in an interview with the Spanish newspaper El PaísAt that time, he had no idea that he would become one of the most famous architects on the planet.

 

From aspiring cartoonist to influential figure

 

In 2016, when he was 42 years old, Time magazine named him as one of the 100 most influential people in the world. “I do not consider Bjarke Ingels the reincarnation of this or that architect from the past. On the contrary, he is the embodiment of a fully fledged new typology, which responds perfectly to the current zeitgeist," said renowned architect Rem Koolhaas, who worked with Ingels for a time. Koolhaas sees the Danish architect as “completely in tune with the thinkers of Silicon Valley, who want to make the world a better place without the existential hand-wringing that previous generations felt was crucial to earn utopianist credibility.”

Ingels, 49, founded the architecture firm Bjarke Ingels Group, better known by its acronym BIG, in 2006. The firm is behind landmark projects such as the VIA 57 West skyscraper in Manhattan, Google's North Bayshore headquarters in California, and the 8 House housing complex, Superkilen Park and the Amager Resource Center waste-to-energy plant in Copenhagen. BIG also designed LEGO House, a giant structure that appears to be built of LEGO bricks, which began construction in 2014. What all these structures have in common is innovative design.

 

Ingels is an architect recognised worldwide for his innovative and avant-garde approach. Credit: Architects not Architecture

 

A giant LEGO house

 

Ingels is a LEGO enthusiast. Before he and his team set to work on the project to build a giant LEGO house, they spent time playing and building with these iconic bricks. “They soon discovered that the systematic creativity of LEGO play often matched the way they approached an architectural task,” the LEGO Group explains.

The giant structure designed by Ingels, known as LEGO House, is an educational and activity centre in Billund, Denmark. The architect's idea was to create “a cloud of interlocking LEGO bricks… a literal manifestation of the infinite possibilities of the LEGO brick.” The aim was to stack 21 white bricks, one on top of the other, and crown them with a keystone inspired by the classic eight-knob LEGO brick. Underneath, there is a covered public square and interconnected terraces.

LEGO House has a total floor area of almost 12,000 square metres, of which 8,500 mare above ground and 3,400 m2 are below ground. The 23-metre-high building is clad in white bricks measuring 18 by 60 centimetres to give the impression that the structure is composed of LEGO bricks. The terraces are brightly coloured and their surfaces are made from materials left over from the production of trainers for several international sports brands, says the company.

 

LEGO House opened its doors for the first time in 2017. Credit: WIRED UK

 

Today, Ingels is considered a visionary and creative artist who has transformed the landscape of architecture. He describes himself as someone “capable of changing things.” He is convinced that “architecture can be an art, but actual art must be transformative.” “Steve Jobs said that for every 20 engineers, one is an artist and the rest are engineers. I think that can be applied to architecture, handball and teaching. A teacher who is an artist can change people,” he concludes.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

We built an innovative ground-level powered tram

We are jointly working with the Barcelona Metropolitan Transport Authority to expand Barcelona’s tram network and reduce contamination.

We are building a groundbreaking tram in Barcelona. This tram is powered by an innovative electrical supply that does not require a catenary, and instead uses ground-level power supply, a technology designed by Alstom.

This is the first time that a ground-level power supply system has been used in a tram in Spain. The tram receives electricity through a segmented conductor rail. Each segment automatically turns on and off as the tram moves forward to preserve pedestrian safety.

 


 


The Barcelona Metropolitan Transport Authority commissioned four joint ventures to extend the Barcelona tram network, each building a section. The joint venture comprising Sacyr Construction, Scrinser and Copcisa was awarded Lot 3, which runs from Lepanto Street to Naples Street along Avenida Diagonal.

"This section will be put into service in the last quarter of 2024. Our civil works section has been completed and we have now moved on to the next phase, by providing support to the testing stage. A tram without passengers will make the first run in the summer." says Javier López Martínez, construction manager of the Tramvia Diagonal Bcn Joint Venture (Lot 3).

 


 


"This project combines Sacyr's commitment to sustainability. We integrate the most innovative construction technologies into our projects and we generate a positive social impact on the environment," says Javier.

This contract is part of the project to connect Barcelona's two tram networks, Trambaix and Trambesos. This 3.9 km-long connection adds 6 new stops to the network and will improve mobility in the city and enhance intermodal transportation by connecting the tram with the metropolitan rail and metro networks. 

In addition, once the connection is completed, it will contribute to reducing the carbon footprint, by encouraging private vehicle users to commute.
The Barcelona tram, inaugurated in 2004, currently has 6 lines, 56 stops and covers 29.22 km, allowing more than 26 million users to travel each year. 

The Golden Bridge is supported by two enormous hands in the hills of Vietnam. Credit: Suicasmo / Wikimedia Commons

The mysteries behind the world's largest hands

Hands not only represent our ability to shape the world around us. They can also convey universal messages: from unity and harmony to peace, power and protection. What do the world's largest hand sculptures symbolise?

ISABEL RUBIO ARROYO | Tungsteno

 

From the Hand of the Desert in Atacama, Chile to the Hands of Harmony in South Korea, or the hands of the Golden Bridge in Vietnam—all these sculptures feature the same body part, but each has its own story. Why have so many artists found inspiration in the human hand? We investigate the mysteries behind the largest hands on the planet.

 

A hand in the middle of the desert

 

In the heart of the Atacama Desert in Chile, a giant hand 11 metres high juts out of the arid sand, its fingers pointing skywards. The reinforced concrete sculpture was created in 1992 by the Chilean artist and sculptor Mario Irarrázabal. Located about 75 kilometres north-west of the city of Antofagasta, it has become one of the main tourist attractions in the area. But it is not the only hand that Irarrazábal has created. There are also other versions on the Playa Brava beach in Punta del Este, Uruguay, and in the Juan Carlos I Park in Madrid.

The sculptor was commissioned by the cement company Melón Hormigones to make Hand of the Desert for the entrance to their plant in Los Andes." Irarrazábal recounts: "It would have looked terrible. Luckily, Melón was going through a huge financial crisis at the time and they told me to forget about it." He showed the project to an engineer from Antofagasta, who asked him to let him talk to his friends, who were "mining engineers and very technical people." These people, above all, "loved the desert." "Let's do it," they replied.


 

Hand of the Desert is one of Chile's most iconic sculptures Credit: PxHere

 

The engineers didn't even ask about the meaning of the hand. Each visitor can give it their own interpretation, says its creator. While some believe it is the city saying farewell to the traveller, others claim it represents the victims of injustice and torture during Chile’s military dictatorship from 1973 to 1990. Today, many people come here to observe the starry sky. "Here, you can see the plane of the Milky Way, the Southern Cross and the Magellanic Clouds, as well as a large number of bright stars, such as Antares, Altair and Alpha Centauri, among many others," says astronomer Maximiliano Moyano D'Angelo.

 

Hands supporting bridges or emerging from water

 

In the hills of Vietnam, other giant concrete hands cradle a 152-metre-long pedestrian bridge suspended almost 1,400 metres above sea level. The bridge is known as Cau Vang (Golden Bridge) and was designed to make visitors feel like they are taking a stroll on a shimmering thread stretched across the hands of God.

This megastructure is part of a 1.7 billion euro project to attract tourism to the Thien Thai gardens at the Bà Nà Hills Resort. And it worked. Thousands of tourists have flocked to the area and pictures of it have gone viral on social media. "We’re proud that our product has been shared by people all over the world," TA Landscape Architecture's principal designer and founder Vu Viet Anh told AFP.

 

The Golden Bridge has gone viral on social media. Credit: Amazing Things in Vietnam

 

A pair of similar looking hands can be found in Homigot, South Korea. These imposing steel hands face each other (about 100 metres apart) and represent coexistence and harmony. They are known as the Hands of Harmony. One of them rises from the sea and offers a unique view at sunrise, while the other is on land at the Homigot Sunrise Plaza. Located at the easternmost tip of South Korea, Homigot is the first place in the country to see the rising sun. In fact, a sunrise festival is held here every New Year’s.

These are just some of the most striking giant hands on the planet, but there are many more. Italian artist Lorenzo Quinn designed six pairs of monumental stone hands for the 2019 Venice Art Biennale, which come together to symbolise "six of humanity’s universal values: friendship, faith, help, love, hope and wisdom." Other sculptures include the Praying Hands in Tulsa, Oklahoma; the Holocaust Memorial in Miami Beach, Florida; and the Caring Hand in Glarus, SwitzerlandTheir ability to convey universal meaning and their powerful visual impact have made these giant hands a magnet for millions of tourists around the world.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Forest City is a ghost city in Malaysia. Credit: YankeeHo / Wikimedia Commons

Three of the world's most useless megaprojects

Ghost cities, abandoned airports and theme parks. Large wasteful megaprojects share common mistakes, from bad planning to poor cost estimation, problematic execution and other external factors.

ISABEL RUBIO ARROYO | Tungsteno

 

The Empire State Building, the Washington National Cathedral and the Metropolitan Museum of Art. All of these buildings have something in common: there were made from Indiana limestone, one of the most prized building materials in the United States. This stone was supposed to be the protagonist of Indiana's Limestone Park, a project that aimed to turn a town in southern Indiana into a tourist destination for lovers of limestone blocks. But the project went bust. We look at this and other major failed projects.

A park for limestone lovers

“Indiana limestone has gone into literally tens of thousands of building projects across North America and the world,” Todd Schnatzmeyer, executive director of the Indiana Limestone Institute of America, told Smithsonian magazineThe goal of Indiana's Limestone Park was to build a set of limestone pyramids in Bedford, Indiana, inspired by the Great Pyramids of Cheops, as well as a 260-metre-long replica of the Great Wall of China.

The federal government granted $700,000 to the town to start the project at a nearby quarry. But soon after construction began, the project was heavily criticised. In 1981, the Bedford Limestone Pyramid received the “Golden Fleece” award, which ridiculed wasteful projects that squandered taxpayers’ money. Critics of the project doubted that it could be done with the funding and that the park could be completed by 1982, The Washington Post reported a year earlier. The government withdrew the funding after just one layer of limestone had been laid.

Indiana limestone is one of America's most prized building materials. Credit: Journey Indiana

A ghost city

Some of the world's most useless projects are ghost cities. Such is the case of Forest City, a sprawling housing complex built in Johor, in the far south of Malaysia. This $100 billion megaproject was inaugurated in 2015 by China's largest property developer, Country Garden. To date, only 15% of the entire project has been built. Despite being nearly $200 billion in debt, Country Garden told the BBC in late 2023 that it was “optimistic” that the full plan would be completed.

Forest City, built far from the nearest major city, was billed as “a dream paradise for all mankind.” Its location could have been better chosen. It has put off prospective tenants and earned it the local nickname “ghost city.” “To be honest, it's creepy,” says Nazmi Hanafiah, a computer engineer who lived in Forest City for a few months. He says, “I had high expectations for this place, but it was such a bad experience. There is nothing to do here.”

A BBC journalist who has visited the place described it as “an abandoned holiday resort.” As well as the beach being deserted, there are signs by the water warning of crocodiles. There is also a shopping mall with many closed shops and restaurants. Other shops are still under construction or empty. Another resident of this ghost city says she feels “sorry for people who actually invested and bought a place here.” The fate of Forest City rests with the Chinese government. “It should be the project that was promised to the people, but that’s not what it is,” the woman tells the BBC.

Forest City highlights the importance of realistic planning in urban development projects. Credit: LETZUPLOADIT

Failed airports

Although airports typically see millions of people pass through them every day, there are some that have been abandoned for years for a variety of reasons—from those too close to war zones to others that simply went bankrupt. Such is the case of Nicosia International Airport in Cyprus and Ciudad Real Airport in Spain. The latter was an ambitious project that began operations in 2008, but failed due to a number of factors. These include poor financial planning, lack of sustainable demand and competition from other nearby airports.

The original budget for the Spanish project was more than €200 million. However, due to delays, this figure appears to have to risen to more than €400 million and some claim it even reached €1 billionThe airport was declared bankrupt in 2012 and until 2019 there were no flights. During those years, it was used as the setting for several films and then, during the pandemic, it was used for flights from China carrying 26 million masks, but since then its facilities have closed again.

Ciudad Real airport sought to relieve saturation at Madrid-Barajas airport. Credit: Carlos Ayala

There are many more abandoned airports around the world. One popular database lists more than 2,000 totally or partially abandoned airports and airfields in the United States alone. Another, focused on Europe, lists several hundred more. The World Economic Forum sees “prime redevelopment opportunities” at some of these airports. “From Hong Kong to Athens, a handful of large-scale airport redevelopment projects are showing the way,” it asserts.

 

· — —
Tungsteno is a journalism laboratory to scan the essence of innovation.

Thousands of people make pilgrimages to the Cristo Rey monument in Colombia every year. Credit: Reg Natarajan

Secrets of the Cristo Rey monument

With its imposing figure and prime location, the Cristo Rey (Christ the King) monument in Cali, Colombia, inevitably brings to mind other colossal monuments such as Christ the Redeemer in Rio de Janeiro or the Virgin of Peace in Venezuela. We look at how it was built and what secrets this symbol of peace conceals.

ISABEL RUBIO ARROYO | Tungsteno

 

Standing 30 metres high, Christ the Redeemer in Rio de Janeiro is one of the New Seven Wonders of the Modern World and one of Brazil's top tourist destinations. Among Venezuela's most iconic structures is the 46-metre, 1,200-tonne Monument to the Virgin of PeaceBut there is another large monument to Jesus in Latin America that echoes these two, perched imposingly on a hilltop in Colombia: Cristo Rey, or Christ the King.

 

A 464-tonne megastructure

 

This megastructure is located at the top of the Cerro de los Cristales, a hill southwest of the city of Cali, 1,440 metres above sea level. The Jesuit priest José María Arteaga led the project from 1949. He raised funds from the departmental assemblies to make it a reality. The Italian sculptor Alideo Tazzioli was commissioned to bring life to this imposing figure, which stands 26 metres tall and weighs 464 tonnes. Each of its arms alone weighs 25 tonnes.

Its structure is mainly made of reinforced concrete and was designed to withstand any tremors. Its construction required 36 tonnes of steel, 1,050 sacks of cement and around 100,000 litres of water, according to the Colombian website El País. Those responsible for the project chose guadua, a type of bamboo native to Latin America, as the main material for the construction of the scaffolding.

 

Cristo Rey stands on the green slopes of Cerro de los Cristales. Credit: Ecologia Digital Films

 

A symbol of peace

 

Cristo Rey was inaugurated in 1953 during the commemoration of the 50th anniversary of the end of the Thousand Days’ War. “Although the war ended in 1902, it was on 25 October 1953, 51 years later, that the monument was officially inaugurated as a sanctuary in the middle of the Cerro de los Cristales,” says the Mayor's Office of CaliThat day will forever be remembered by the people of Cali as a historic one. “Monsignor Caicedo Téllez, Bishop of Cali, celebrated Mass in front of a crowd of 30,000 people, according to journalistic estimates," the Colombian website reports.

Since then, Cristo Rey de Cali has been a place of pilgrimage for thousands of people. “It is one of the most representative icons of the city, embodying its history and culture. It is a tourist attraction and also a symbol of peace, because it was a monument built to celebrate the end of the Thousand Days’ War,” said Arabella Rodríguez, former secretary of tourism for Cali, in 2017.


 

The monument has become a symbol of peace. Credit: Gobernación del Valle del Cauca

 

The Christ that embraces Cali

 

Cristo Rey is not only a religious monument, but also a tourist attraction that has undergone a remodelling in recent months. “New tourist spots, elevated paths, viewpoints, commercial premises, restrooms, water recycling tanks, a prepared food area and an experience area have all been added,” says the Mayor's Office of Cali.

The monument is located at the top of a hill, which can be reached via stairs. The Governor's Office of Valle del Cauca says that, once at the top, “this is the best viewpoint for visitors to appreciate the city.” “If you turn around, on the other side, you will see an imposing mountain range with magnificent vegetation,” it says. But perhaps the most striking view is when you look up: “Christ seems to extend his arms to embrace Cali and its inhabitants, offering them protection.”

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Louise Bourgeois is known for her sculptures of spiders. Credit: Guggenheim Museum Bilbao.

Mother of the world's most famous giant spiders

Spiders build their webs out of their own bodies. Louise Bourgeois did the same with her sculptures. We look at how this French-American woman became an influential figure in contemporary art.V

ISABEL RUBIO ARROYO | Tungsteno

 

An enormous nine-metre-high spider is on display outside the Guggenheim Museum Bilbao in Spain. Called Maman, the work is by Louise Bourgeois (Paris, 1911 - New York, 2010) and is a tribute to her mother, who was a weaver. “Bourgeois’ spiders are highly contradictory as emblems of maternity: they suggest both protector and predator,” the museum says. We explore the life and work of this key figure in contemporary art.

 

The sculptor who drew spiders

 

As early as the 1940s, the French-American sculptor was already drawing spiders. These animals occupied a central place in her work. “The spider really began as two drawings in 1947. At that time, the spider was a friendly presence. She [associated] it with eliminating mosquitoes," explains Jerry Gorovoy, Bourgeois' assistant and friend.

It wasn't until 1994 that she incorporated spiders into her sculptures. “The silk of a spider is used both to construct cocoons and to bind prey, and spiders embody both strength and fragility,” says the Guggenheim Museum Bilbao. Maman's legs resemble Gothic arches and function as “a cage and as a protective lair to a sac full of eggs perilously attached to her undercarriage.”

Bourgeois also associated the spider with her own artistic practice because this creature builds its web out of its own body. “Louise said that’s exactly what she does with sculpture. Sculpture has to come out of the body,” says Gorovoy. He explains that some of the first spiders she created represented security. To keep them from falling, they tended to be more vertical. “As she got bolder, she was able to arrange the legs and compositions that are much more dynamic,” he says. Indeed, her sculpture Spider appears to be on the move.

 

Spider is a bronze spider made by Bourgeois in her Brooklyn studio. Credit: Hauser & Wirth - Art Gallery

 

Art as therapy

 

According to the Museo Reina Sofia, Bourgeois' work was generated from the spaces she was inhabiting or her memory of them: her childhood in Paris, Aubusson, Choissy and Anthony; her country house in Easton (Connecticut, USA) and her studios in New York and Brooklyn. Architect and professor Beatriz Colomina explained that “those physical locations of her memory are all domestic and all associated with trauma.”

“Her work is at once deeply personal—with frequent references to painful childhood memories of an unfaithful father and a loving but complicit mother—and universal, confronting the bittersweet ordeal of being human,” says the Guggenheim Museum Bilbao. Bourgeois understood art as something curative, almost like therapy. “I know that when I finish a drawing, my anxiety level decreases. When I draw it means that something bothers me, but I don’t know what it is. So it is the treatment of anxiety,” said the artist herself.

After studying at the Sorbonne and marrying the American art historian Robert Goldwater, Bourgeois moved to New York in 1938 at the age of 27. The human body played a central role in her work. Through its representation, the artist explored universal themes such as vulnerability, identity, sexuality, violence and protection. This is evident in her series of drawings Femme Maison (1946-1947) and her sculptures Femme-Couteau (1982), Femme Maison (1983) and Spiral Woman (1984).

 

Bourgeois began experimenting with wood, plaster, latex and other solid materials in 1960. Credit: Tate

 

Throughout her career, Bourgeois received numerous honours. For example, in 1977 she was awarded an honorary doctorate in art from Yale University, in 1981 she was elected Fellow of the American Academy of Arts and Sciences in New York, and in 2003 she was awarded the Wolf Prize in the Arts, one of the most prestigious international arts awards. The sculptor died in 2010 at the age of 98, leaving behind an unparalleled artistic legacy. Her work has had a profound impact on contemporary art and continues to inspire artists and art lovers around the world.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

The Parthenon is considered one of the masterpieces of classical architecture. Credit: Mark Cartwright / World History Encyclopedia.

The secrets behind the Parthenon's resilience

The Parthenon has stood for over two millennia. Not only has it witnessed the glory and decline of empires, but it has also survived wars, bombings and devastating earthquakes.

ISABEL RUBIO ARROYO | Tungsteno

 

The Parthenon has withstood bombardment, occupation, neglect, vandalism and even earthquakes. Over the centuries, this Greek temple located on the Acropolis of Athens has become a priceless heritage, revealing the sophisticated construction methods used in its creation. We investigate how this 5th century BC structure was built and how it still stands today.

The secrets of the Parthenon

Construction of the Parthenon began in 447 BC to honour Athena, the goddess of wisdom and war. The builders mined 100,000 tonnes of marble from a quarry about 16 kilometres from AthensWagons were used to transport the blocks, which were carved and trimmed by hand on-site with great precision. It is believed that they used a system of pulleys, ropes and wooden cranes to pull and lift the marble blocks. The structure was built in just 9 years.

Although it is considered one of the crowning achievements of the Doric order, one of the most representative architectural styles of classical Greece, it also incorporates some Ionic elements. At first sight, the Parthenon is striking in its perfection. Its lines, symmetrical columns and imposing structure convey a sense of balance and harmony. But behind this facade of perfection lies a fascinating secret: the Parthenon is not as straight as it seems.

 

Construction of the Parthenon began in 447 BC to honour the warrior goddess Athena. Credit: TED-Ed

 

A subtle and deliberate curvature

 

In fact, it is characterised by slight curvatures, starting from the foundation and rising along the steps, the colonnade and even the roof. To achieve this effect, the Parthenon’s architects used ingenious techniques, such as bevelling or angling the blocks of the steps, tilting the columns slightly inwards, and making the corner columns thicker.

“A building as large as the Parthenon that was perfectly straight, with perfect horizontals and perfect verticals, would appear less interesting visually than a building that has these deviations, which are at first sensed rather than actually seen or experienced,” Jeffrey Hurwit, professor emeritus of art history and classics at the University of Oregon and author of The Athenian Acropolis, tells the History Channel. The Parthenon “is a building, but it's [also] almost a sculpture.”

 

The Greeks applied subtle architectural techniques to create an illusion of visual perfection. Credit: History

 

Extraordinary earthquake resistance

 

If the Parthenon is remarkable for anything, it is how it has stood the test of time for more than two millenniaIn 426 BC, an earthquake struck Athens with great force. Although the Parthenon's columns shifted slightly, its structure remained intact. A group of engineers at a workshop on the Acropolis concluded that the modular columns of the Parthenon were deliberately designed to have excellent seismic properties.

Scientists from around the world have investigated the seismic resistance of the Parthenon. This structure was built on natural bedrock, which gives it a solid and stable foundation. In addition, its columns are not solid blocks, but are composed of perfectly carved and joined “slices” and there are metallic joints between the layers of marble, bonded with lead, which act as shock absorbers.

 

The Parthenon is still standing despite suffering several earthquakes. Credit: AP Archive

 

The metamorphosis of the Parthenon

 

Originally conceived as a temple dedicated to the goddess Athena, the Parthenon later morphed into a Byzantine church, a Roman Catholic cathedral and a mosque. It did not become a ruin until 1687. In the midst of the war between the Venetians and the Ottomans for control of the Acropolis, a fateful event marked the history of the Parthenon forever. During the Venetian bombardment, an explosion occurred inside the temple, destroying the centre of the building.

Subsequent restorations caused further damage. In 1975, an elaborate, decades-long restoration began. Every salvageable piece of marble was returned to its original position and the gaps were filled with marble from the same quarry used by the ancient Athenians. The project took more than 40 years. Today, the Parthenon attracts visitors from around the world. As well as being one of Greece's most popular tourist destinations, it is a symbol of resilience and timeless beauty.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Rem Koolhaas is renowned for his provocative style. Credit: Delirious New York: A Retroactive Manifesto for Manhattan / Wikimedia Commons

The architect who explains the chaos of New York

The architect Rem Koolhaas no longer sees New York as a physical reality, but as the epicentre of certain values that no longer resonate with him. There was a time when he fought against the idea of this great city as a lost cause. He put his reflections into an iconic book: ‘Delirious New York: A Retroactive Manifesto for Manhattan’.

ISABEL RUBIO ARROYO | Tungsteno

 

Rem Koolhaas worked as a journalist before becoming an architect. Known for his provocative style, he went on to become one of the world's most influential architects. So much so that he was awarded the prestigious Pritzker Prize in 2000. His most famous works include the headquarters of China Central Television in Beijing and the Prada Foundation in Milan. But he is most famous for his book Delirious New York: A Retroactive Manifesto for Manhattan, which outlines his perspective on the chaos and vitality of this city.

 

The book that catapulted Koolhaas to fame

 

Koolhaas' writings made him famous in the field of architecture before he had completed a single building, as the organisers of the Pritzker Prize note. The Rotterdam-born architect, who spent four years of his youth in Indonesia, was a journalist in the 1960s. After graduating from the London School of Architecture Association in 1972, he received a scholarship to travel and research in the United States. It was there that he wrote Delirious New York, hailed by critics as a classic text on modern architecture and society.

In this book, Koolhaas examines New York as a metaphor for the diversity of human behaviour. In the late 19th century, the explosion of population, technology and information transformed Manhattan into a laboratory for the invention and testing of a new way of life: the culture of congestion. This culture, he says, is reflected in the city's architecture. "Manhattan," writes Koolhass, "is the 20th century’s Rosetta Stone… occupied by architectural mutations (Central Park, the Skyscraper), utopian fragments (Rockefeller Center, the UN Building) and irrational phenomena (Radio City Music Hall)…"


 

New York City today is a metropolis full of contrasts. Credit: Pxhere

 

The Chrysler Building sleeps with the Empire State Building

 

The iconic cover image of the first edition of this book shows the Empire State Building and the Chrysler Building lying in the same bed. This symbolic image captures the essence of the architect's approach to New York City, presenting a provocative and playful vision of architecture and urbanism. When Koolhaas wrote it, the city was in a spiral of violence and decay. But he saw it as a potential urban paradise. "It was geared against this idea of New York as a hopeless case," Koolhaas told Smithsonian magazine. "The more implausible it seemed to be defending it, the more exciting it was to write about."

The book explores in depth the chaos and complexity of New York as a constantly evolving metropolis. Although the first skyscrapers were built in Chicago, Koolhaas argues that New York became the true epicentre of urban modernity. Some critics have accused the architect of celebrating Manhattan’s congestion and lack of urban planning. His defenders argue that his analysis seeks to highlight the complexity and vitality of urban life. Today, Koolhaas' view of New York has changed. "I no longer see New York as a physical reality, but as the epicentre of certain values that I don't feel at all close to," he told Icon Design in 2023.

 

The architect's legacy

 

In 1975, Koolhaas founded the Office for Metropolitan Architecture (OMA) in London, a practice that focused on contemporary design. The firm won a competition to expand the parliament building in The Hague and a major commission to develop a master plan for a residential district in Amsterdam. Years later, the architect was commissioned to design and build the Netherlands Dance Theatre.

His most iconic works include the Austrian House, the Taipei Performing Arts Centre, the Qatar National Library and Qatar Foundation Headquarters, the Galeries Lafayette Foundation in Paris, the Prada Foundation in Milan, the China Central Television Headquarters in Beijing and the Seattle Central Library. He also published the mammoth book S, M, L, XL in 1995. In it, he summarised OMA's work in what he called a "novel about architecture," which includes thoughts, plans, photographs, essays and writings of fiction.


 

The headquarters of China Central Television in Beijing is the work of architects Rem Koolhaas and Ole Scheeren. Credit: Wikimedia Commons

 

Despite the success of Delirious New York and his long career as an architect, Koolhass, 79, says he has never had it easy: "We have never been able to turn clients away. We've never had that moment of guaranteed peace of mind. And I think it's because, as well as bringing an interest in architecture, we were at the same time imparting criticism, which made our approach less attractive to many clients. We probably scared off as many as we attracted," he says.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Five Measures to Valorize Construction Waste

In Catalonia, we have two pioneering projects in the implementation of circular economy measures: an office building at Plaza Europa 34 in Hospitalet de Llobregat (Barcelona) and a development of 95 multi-family homes in Viladecans (Barcelona).

For a construction project to be considered circular, it must address five aspects: meeting the three "Rs" in waste (reduce, reuse, and recycle), in addition to the use of recycled materials and the reduction of CO2 emissions.

In Catalonia, we have two pioneering projects in the implementation of these measures: an office building at Plaza Europa 34 in Hospitalet de Llobregat (Barcelona) and a development of 95 multi-family homes in Viladecans (Barcelona).

“The first project where we applied circular economy initiatives was the office building”, explains Eugenia Riqué Soriano, Head of Quality, Environment, and Energy, who is responsible for implementing circularity in construction processes.

Eugenia shared her experiences in the Circularization Program for Companies that we have underway at the Circular Economy Innovation Center (CIEC) in Madrid, where she explained the processes implemented in this building, which contributed to achieving LEED Gold certification with a very high score of 71 points.

Among the challenges overcome was the lack of space on site, for which they worked with containers to properly separate waste factions and accumulate quantity, thus filling trucks to the maximum.

 


 


"For the first time, we valorized 100% of the gypsum board scraps, returning them to the manufacturer to be recovered and reused as by-products. This prevented such waste from ending up in a landfill, as is usually the case. We accumulated the containers on each floor, storing them until we could fill a large truck and send it off. We did the same with mineral wool," Riqué explains.

"The key to everything was the involvement of supervisors and on-site personnel. It’s thanks to them that we successfully implemented these initiatives," says Riqué.

Regarding the use of recycled materials, Riqué pointed out as a novelty the use of 100% recycled sand from the demolition of other projects, which was incorporated into the mortar screeds of the different floors. "For me, it was a milestone: the easiest thing is to extract from quarries, although I encountered some resistance, we were able to demonstrate that it's just as good."

 


 

Pilot Project in Viladecans


Riqué is now working on the Viladecans homes, where they have proposed a pilot project to further advance circularity. "In addition to the initiatives implemented in the tower, in these homes, we are also valorizing 100% of the polystyrene and other plastics, the structure incorporates concrete with a reduced carbon footprint, we have used 100% recycled aggregate in the cladding of retaining walls, and the mortar screeds contain 100% recycled plastic fibers. The custom manufacturing of some materials also allows us to reduce waste generation," Riqué explains.

Additionally, she highlights the importance of teamwork in achieving circularity: advising, listening, and earning the complicity of staff to achieve objectives.

Sacyr has a business development model that aims to optimize resource use, reduce waste generation, and for those that cannot be avoided, process and valorize them to the maximum. All our activities are aligned with the circular economy.

 


 

  • Building
  • Households

The Palace of Versailles is located about 20 kilometres west of Paris. Credit: Palace of Versailles

The secrets of the Palace of Versailles

The Château de Versailles survived the First World War and was chosen for the signing of the Peace Treaty in 1919. We explore the secrets of in this majestic place, declared a World Heritage Site by UNESCO.

ISABEL RUBIO ARROYO | Tungsteno

 

Just 20 kilometres from the centre of Paris lies one of the largest and most impressive palaces in the world: the Château de Versailles. Not only was it the residence of several monarchs until the French Revolution, but it also played a crucial role in scientific research and housed vast gardens and even a menagerie with all kinds of wild animals.

 

A hunting lodge turned palace

 

The origins of the Palace of Versailles date back to the 17th century: "In 1623, Versailles was no more than a small isolated village in the middle of marshes, far from the tumult of the capital," says the Palace of Versailles websiteThen it became the hunting lodge of King Louis XIII, who ordered its construction in 1623. This building, rebuilt between 1631 and 1634 is the origin of the palace that still stands today.

The hunting lodge gradually became a pleasure palace thanks to the works ordered by Louis XIV. In 1682, it became the main residence of the royal court and the government. At times, more than 5,000 people were housed in its vast rooms. It was the residence of the French monarchy between the reigns of Louis XIV and Louis XVI, according to UNESCO"Embellished by several generations of architects, sculptors, decorators and landscape architects, it provided Europe with a model of the ideal royal residence for over a century."

 

The Palace of Versailles is one of the largest palaces in the world. Credit: Château de Versailles

 

From a menagerie to a gallery with more than 300 mirrors

 

The palace covers 800 hectares. The distances were so great that dishes were often served cold due to an architect’s failure to take into account the distance between the kitchen and the rooms where the food was served. This is why Louis XV decided in the 18th century to build private kitchens in his apartments. This palace even had room for a menagerie, which housed wild animals from all over the world and inspired the creation of modern zoos.

The gardens of Versailles are among the largest in the world. They have 372 statues, 55 decorative water features, 600 fountains and more than 32 kilometres of waterways. They once boasted 400 botanical species from all over the world, including pineapples, vanilla and coffee. In the 17th century, the fragrance of the flowers in the Jardin du Trianon was so intense that it could cause visitors to feel dizzy.

One of the main attractions of the palace is the Hall of Mirrors, which is adorned with 357 mirrors. In the 17th century, mirrors were considered an extremely expensive luxury. As Venice had a monopoly on their manufacture, France lured talented Venetian craftsmen and offered them the chance to create unique pieces for the palace. Legend has it that Venice, jealous of its monopoly and fearful of its production secrets being revealed, controlled the master mirrormakers and even forbade them to leave the city on pain of death.

 

The Hall of Mirrors is adorned with 357 mirrors. Credit: Studio McGraw

 

In 1833, Louis Philippe, "King of the French", decided to turn the palace into a museum "dedicated to all the glories of France". In this iconic place, unique moments in history were still to take place. The Hall of Mirrors was the scene of such iconic moments as the signing of the Treaty of Versailles, which ended the First World War in 1919. Declared a UNESCO World Heritage Site in 1979, the palace is now preparing to host equestrian events for the Paris 2024 Olympic Games.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

The Marina Bay Sands is located on the waterfront of Singapore's financial district. Credit: Pxhere

The secrets behind the world's most expensive buildings

The most expensive building on the planet is the Great Mosque of Mecca. It is followed by two megastructures that house luxury hotels, plus shops, restaurants and other exclusive venues. We investigate the secrets of the world's most expensive buildings.

ISABEL RUBIO ARROYO | Tungsteno

 

The Great Mosque of Mecca, the Abraj Al-Bait complex in Mecca and the Marina Bay Sands in Singapore are three of the most expensive buildings in the world. Their high cost is a result of many factors, including the quality of the materials, the complexity of the design, the skilled labour required, the permits and regulations, and other unforeseen circumstances.

 

The Great Mosque of Mecca

 

The most expensive building on the planet is the Great Mosque of Mecca, also known as Masjid al-Haram. Its construction began in the 7th century AD and has undergone numerous extensions over the centuries. It is estimated that it cost around $100 billion to build this 400,000 square metre megastructure in Saudi Arabia. The most striking fact about this mosque, which is visited by millions of pilgrims every year, is that it can hold up to four million people at a time, the equivalent of almost half the population of London in one building.

According to the pillars of Islam, every Muslim who has the financial and physical means must make the pilgrimage to Mecca at least once in their lifetime. The mosque consists of rectangular central courtyard, surrounded by covered prayer areas. Those who make the pilgrimage must walk seven times counter-clockwise around the Ka'ba, a cubic stone structure in the courtyard that represents Allah's dwelling place on earth.

 

The Great Mosque of Mecca is the largest mosque in the world. Credit: Megaprojects

 

The Abraj Al-Bait

 

Second on this list is a megastructure also located in Mecca. The Abraj Al-Bait is the tallest skyscraper in Saudi Arabia and one of the tallest in the world. The 1.5 million square metre complex was built between 2002 and 2012 at a cost of $16 billion. At the top of the tower, which stands 601 metres tall and has more than 100 floors, is the world’s largest clock. It has four faces each with a diameter of more than 46 metres. Inside it houses a shopping centre with a capacity for 65,000 people, a prayer area and a five-star hotel.

 

Abraj Al-Bait is the tallest building in Saudi Arabia. Credit: Looking 4 (En)

 

The Marina Bay Sands

 

On the waterfront of Singapore's financial district stands the imposing Marina Bay Sands. These three gigantic skyscrapers, connected by a single roof, were designed by architect Moshe Safdie. They were built between 2006 and 2010 at a cost of around $6.2 billion. Covering an area of 845,000 square metres, the complex houses a 2,560-room hotel, a convention centre, shops, restaurants, theatres, museums and a casino. The hotel has two exclusive suites, each measuring 629 square metres. According to its creators, this is the equivalent of more than two tennis courts.

The owners claim that "the three iconic towers are among the most complex buildings ever built." Each has sloping and straight sections. The three meet at a height of 195 metres, creating a 9,941 square metre elevated park known as Sands SkyPark. The construction of this part of the Marina Bay Sands was one of the "most complex and challenging" phases of project. More than 7,000 tonnes of steel were pre-assembled at ground level in 14 individual pieces. Each piece was hoisted 200 metres using strand jacks, "more commonly used in bridge construction." Sands SkyPark features a public observatory, jogging tracks, gardens, restaurants, lounges and an infinity pool.

 

The Marina Bay Sands is notable for its three towers, connected at the top by an aerial park. Credit: Details in Luxury

 

Some of the world’s most expensive buildings include hotels, stadiums, offices and government buildings. Examples include the Resorts World Sentosa in Singapore; the SoFi Stadium, Apple Park and The Cosmopolitan in the United States; and Palace of the Parliament in Bucharest. In addition to their privileged location, exceptional design and high-quality materials, many of these buildings have something else in common: they are symbols of luxury and exclusivity.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

An uncrewed ocean mapping vehicle has discovered a seamount taller than the Burj Khalifa. Credit: Saildrone / Wikimedia Commons

A seamount taller than any skyscraper

Although the ocean covers around 71% of the Earth's surface and is the largest ecosystem on the planet, it is still largely unknown to humans. Several missions are underway to unlock its secrets One of them has found something remarkable: an underwater mountain taller than any skyscraper.

ISABEL RUBIO ARROYO | Tungsteno

 

Only 5% of the ocean has been explored and mapped by humans, according to UNESCOAn autonomous ocean mapping vehicle has identified a previously unidentified seamount that is larger than the tallest building on Earth. These geological formations could serve as a reference point for different habitats and the search for previously unknown life. What is known about this mysterious mountain, taller than the Burj Khalifa?

 

A giant mountain hidden under the sea

 

The vehicle in question is called the Saildrone Surveyor, and it has spent several months surveying Alaska's Aleutian Islands and areas off the coast of California. In total, it has surveyed more than 45,000 square kilometres of ocean floor, even in 35-knot winds and waves of more than five metres. These conditions would have been "too challenging for most crewed survey vessels," according to Saildrone.

One of the most striking findings is a previously unknown seamount off the coast of California that is around 1,000 metres high. This underwater mountain is therefore taller than the world's tallest skyscraper, the Burj Khalifa in Dubai. At over 828 metres tall and 160 storeys, the structure holds several world records. As well as being the tallest building on the planet, it has the world's highest open-air observation deck and the elevator with the longest travel distance in the world.

 


 

The Saildrone Surveyor is the world´s largest uncrewed ocean mapping vehicle. Credit: Saildrone

 

An unexplored seafloor

 

"Identifying such seamounts improves our understanding of the physical processes of the ocean and identifies areas needing further exploration as unique habitats," says Saildrone. The US Exclusive Economic Zone (EEZ), which extends from the coast to 200 nautical miles from the shore, is one of the largest in the world, but much of it remains unmapped, unobserved and unexplored. "In terms of area, Alaska is by far the least mapped region of the US EEZ," says Saildrone.

Aurora Elmore, Cooperative Institute Manager at National Oceanic and Atmospheric Administration (NOAA) Ocean Exploration, says that every American, in one way or the other, depends on the ocean: "From protein from fish to feed animals or humans, to deep-sea cables that make the Internet possible. The only way the US can maximise our ocean resources is to understand what's there," she says.

During the mission, the Surveyor also carried technology from the Monterey Bay Aquarium Research Institute (MBARI) to collect environmental DNA. "Outfitted with the Environmental Sample Processor, a groundbreaking "lab in a can," the Surveyor was able to collect important clues about marine biodiversity and ocean health from the genetic "fingerprints" left behind by marine life," says Saildrone. But no specific details are offered.

 

The Surveyor aims to unlock the deepest secrets of the ocean. Credit: Saildrone.

 

Unique ecosystems on the ocean floor

 

The Saildrone Surveyor mission is funded by NOAA and the Bureau of Ocean Energy Management. It is the first step in mapping the seafloor of key regions in Aleutian waters at high resolution. Elmore says the advantage of the Surveyor "is getting that initial exploration step done faster, cheaper, and without as much staff."

But Saildrone is not the only project of its kind. The crew of the Schmidt Ocean Institute's research vessel Falkor (too) is also trying to unravel the mystery of the ocean floor, and has discovered several giant seamounts. "A map is a fundamental tool for understanding our planeta”locating seamounts almost always leads us to understudied biodiversity hotspots," says Jyotika Virmani, Executive Director of Schmidt Ocean Institute. "Each time we find these bustling seafloor communities, we make incredible new discoveries and advance our knowledge of life on Earth," she says.

 


 

Seamounts can host biodiversity hotspots. Credit: Schmidt Ocean Institute.

 

Many details about the seamounts are still unknown. But their discovery raises many questions: from how they were formed, to what kind of marine life lives on them, how they impact ocean currents, and even whether they could be a source of mineral resources. As Jamie McMichael-Phillips, project director of Seabed 2030, points out, "with 75% of the ocean still to be mapped, there is so much to be uncovered. Ocean mapping is crucial to our understanding of the planet and, in turn, our ability to ensure its protection and sustainable management."


Tungsteno is a journalism laboratory to scan the essence of innovation.

The walls of Avila are among the best preserved in the world. Credit: José Luis Cernadas Iglesias / Flickr

Three of the most impressive city walls in the world

Walls have played a very important role in human history. As well as protecting cities and their inhabitants, they have symbolised power and prestige and facilitated trade. We explore the history of some of the most impressive city walls on the planet.

ISABEL RUBIO ARROYO | Tungsteno

 

The most famous wall in the world is probably the Great Wall of China. If this fortification stand out for anything, it’s for its stratospheric dimensions. It has thousands of watchtowers and collectively stretches more than 21,000 kilometres in length, which is almost twice the diameter of the Earth and half its circumference.

But this is not the only impressive wall on the planet. Many other walls surround cities and leave visitors speechless, including Avila in Spain, Ston in Croatia and Carcassonne in France.

 

The walls of Ávila

 

The walls of Ávila are among the best preserved in the world. They have a perimeter of 2,516 metres and have 87 semi-circular towers or turrets, nine gates and 2,500 merlons (vertical projections). This ancient megastructure built in a city in the centre of Spain with a population of around 60,000, has a history of more than 2,000 years. Excavations show that walls were first built in the 1st century AD, when the area is thought to have been inhabited by both the Vettones and the Romans.

The walls have undergone several reconstructions, such as those ordered by Alfonso VI (1048-1109) after the conquest of Toledo, and those ordered by Alfonso VIII (1155-1214), which are the walls that have survived to the present day. According to the Ávila tourism websiteat that time the town needed to defend itself.

"In the 16th century, they continued to fulfil the functions of health security and economic control, and reforms were carried out to repair them, but once the danger of war had disappeared, it was decided to dismantle of the additional defences (such as the barbican and the moat), which proved ineffective in the face of the military machinery of the time," they add.

At the end of the 19th century, some intellectual circles were in favour of demolishing the walls, as was being done in other European cities, as they were considered an obstacle to urban development. But the city council was determined to preserve them. The walls were declared a World Heritage Site by UNESCO in 1985, along with the old town and several churches outside the walls. Today, 1,700 metres of this megastructure can be visited.

 

The walls of Ávila measure 2,516 metres long and have 87 towers and nine gates. Credit: Come to Spain

 

The city walls of Ston

 

The city walls of Ston consist of the main walls and three forts, 41 towers, seven bastions, four pre-walls and a water-filled moat that extends around some of the edges. Construction began in the early 16th century in this maritime town in southern Croatia. "It took almost four centuries to finish these complex defence walls, as the builders had to adapt to the rough terrain and advancements in warfare technology," explains the official Dubrovnik heritage website.

The constant threat to the inhabitants of Dubrovnik prompted them to start building defensive walls in 1333. This construction was to become the second longest wall in Europe, after Hadrian's Wall. These walls were last used for defensive purposes in the 19th century, and are now a popular tourist destination of incalculable architectural and cultural value.

 

The walls of Ston are the second longest in Europe. Credit: Explore Croatia

 

The ramparts of the city of Carcassonne

 

Among the best-preserved medieval fortifications are the city walls of Carcassonne in France. Declared a UNESCO World Heritage Site in 1997, this city looks like something out of a medieval fantasy novel, according to the French National Monuments Centre. "Between the 3rd and 5th centuries, Carcassonne was attacked by Visigoths, Saracens and Franks. As a result, the city was equipped with a Gallo-Roman enclosure, featuring horseshoe-shaped towers and wide bays," they say.

In the 13th century, Carcassonne was once again besieged, this time during the bloody crusade against the Albigensians. In order to reinforce its strategic position, an extensive 1,600 metres long outer rampart was built. It was at this time that the town took on its present appearance. During the reigns of Philip III the Bold and Philip IV the Fair, the fortifications were modernised. The walls were fitted with loopholes for crossbow firing and new gates were built. Today, the two concentric walls have a total of three kilometres of ramparts and 52 towers. The views from the top are breathtaking. They include a unique panorama of the medieval town, the vineyards and the Pyrenees.

 

Carcassonne is surrounded by a double medieval wall. Credit: Wonderliv travel.

 

These are just some of the most impressive city walls in the world. Others such as the walls of Cartagena de Indias in Colombia, York city walls in the UK, or Itchan Kala in Uzbekistan should also be on this list. All of them have unique characteristics but were built with the same purpose: to protect the cities and their inhabitants from external attack.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

There is a debate about the viability and sustainability of marine mining. Credit: Wikimedia Commons.

The environmental dilemma of marine mining

Norway has a reputation for environmental leadership, but its decision to approve seabed mining exploration has drawn widespread criticism. Much of the scientific community warns that the practice will lead to the destruction of ecosystems.

ISABEL RUBIO ARROYO | Tungsteno

 

In early January 2024, Norway became the first country in the world to approve seabed mining exploration. The aim is to accelerate the search for metals and minerals essential to the green technology industry. This decision has disappointed many scientists and environmental organisations who believe that it will irreversibly damage biodiversity and ecosystems.

 

Extracting metals and minerals from the seabed

 

Deep-sea mining is the practice of extracting metals and minerals from the seabed. "The world needs minerals in the transition to a low-emission society," says the Norwegian government. The vote in Norway opens the door to "sustainable and responsible" exploration in an area of 281,000 square kilometres, roughly the size of Italy. Commercial-scale mining will require a further parliamentary vote.

Astrid Bergmål, state secretary at the Ministry of Petroleum and Energy, told the scientific journal Nature that the vote "does not mean extraction starts" immediately. "We have to collect more information before we can take a decision about extracting these minerals. That is what this opening is all about. It is not the same as approving extraction," Norwegian Energy Minister Terje Aasland told CNBC.

Maria Varteressian, Norway's deputy foreign minister, agrees: "Minerals will be a critical component in the new energy systems so the main question is not whether we need the minerals or not, the important question is can we produce them in a sustainable way." Several scientists have criticised the Norwegian government's decision, pointing out that it goes against the advice of the Norwegian Environment Agency, the scientific advisors of the Ocean Panel and other researchers.

 

Norway is looking for ways to obtain essential minerals for manufacturing batteries and green technologies. Credit: France 24 English

 

An "irresponsible" decision for the planet

 

"Researchers are both baffled and deflated by the decision," says an editorial published in NatureSome experts point out that too much is still unknown about deep-sea ecosystems. They believe that exploiting them without a full understanding of their fragility could have devastating consequences.

Anne-Sophie Roux, European deep-sea mining lead at the Sustainable Ocean Alliance, considers Norway's decision "irresponsible" and "puts a nail in the coffin" of the country's proclaimed role as a climate leader. "The goal of any exploration activities should be to better understand the scale of the environmental threats deep-sea mining poses—not to justify a practice we know will have vast negative impacts on marine life and the planet’s health," she told CNBC.

The argument that deep sea mining can be done sustainably goes against the broad consensus of the scientific literature, according to the expert: "There is no way to sustainably mine the deep sea in our current day and age, as it would inevitably lead to ecosystem destruction, species extinction, various sources of pollution and disruption of the climate ecosystemic services of the ocean."

 

Deep-sea mining is the practice of extracting metals and minerals from the seafloor. Credit: MIT Mechanical Engineering

 

The uncertain future of deep-sea mining

 

In addition to the fact that deep-sea mining can cause irreversible damage to biodiversity and ecosystems, it can also affect the fishing industry, create sediment plumes, damage the seabed and increase pollution. Several scientists also question the arguments that such mining will boost Norway’s economy, and that land-based supplies of metals such as manganese and cobalt (which are used in batteries and other electronics) are insufficient to support the transition to a low-carbon economy.

While Norway has a reputation for environmental leadership, its stance on environmental mining has drawn sharp criticism from much of the scientific community. "Norway’s about-face isn’t just a setback for the country’s sustainability efforts; it undermines the progress and the credibility of the Ocean Panel [a global alliance of national leaders that aims to promote the sustainable use of the oceans]," says the Nature editorial. It remains to be seen whether the government will allow deep-sea mining to move beyond the exploration phase and whether it becomes an important part of the Norwegian economy.

 


Tungsteno is a journalism laboratory to scan the essence of innovation.

Sacyr and Innovation, an inseparable pair

Like every year, June’s iFriday focused on internal innovation at Sacyr. Some of the supervisors of the most innovative and sustainable projects at Sacyr shared how they were developed and what their progress is like.

Last June 24, we held our last iFriday before the summer holidays, under the title “Sacyr and Innovation, an inseparable pair”. 

So far in 2022 we have had multiple innovation agents over that have served as inspiration to the company. In this first half of 2022, we spoke about gastronomic innovation with Nino Redruello, in February, some women in the STEM field visited our offices, in March, Antonio Oliva, Director of R&D at New Growing System discussed sustainable agriculture, Yaiza Rubio, from Telefónica brought us the metaverse in April, and in May, we learned about renewable energies with Gonzalo Sáenz de Miera from Iberdrola.

Like every year, June’s iFriday focused on internal innovation at Sacyr. Some of the supervisors of the most innovative and sustainable projects at Sacyr shared how they were developed and what their progress is like. 

 

 

Life HyReward


Patricia Terrero, Head of R&D+i at Sacyr Agua, presented project Life HyReward. The goal of this project is to explore how to generate electricity from brines resulting from desalination to make it more sustainable. The project seeks to assess how viable it is to settle on a new, more sustainable desalination process, combining reverse osmosis, a water desalination process that pressure filtrates salt water through membranes that do not let salt through, and reverse electrodialysis, which generates electricity from the saline gradient between two solutions with differenty degrees of salinity, like salt water and fresh water.

The incorporation of this process with conventional technologies allows to improve electricity generation in desalination processes, by recovering electric energy from the brines obtained in desalination before releasing them back into the sea, which in turn also reduces CO2 emissions.

“While our planet is called the blue planet, the availability of fresh water is very scarce, and we have a significant water deficit which is likely to aggravate in the next few years due to the effects of climate change. We need to look into unconventional resources to ensure demand supply, using desalination to obtain fresh water”, explained Patricia Terrero. 

 

 

Microuwas-BIO

 

The new hybrid process aims to be environmentally-friendly, generate clean and 100% renewable energy, without any negative consequences for the environment, contributing to reducing emissions and mitigating climate change. 
Then, Juan Pablo Antillera, Technical Director of Waste treatment of Sacyr Circular and Paloma Mingo, Manager of R&D projects of Valoriza, presented the project Microuwas-BIO.

This project seeks to design and develop a small-scale anaerobic digestor to identify and analyze the intervening microorganism colonies. This way, we achieve unprecedented levels of biotechnological control. The final goal is to increase the volume and quality of biogas and reduce the amount of waste bound to landfills and its biological and chemical reactivity. 

“This project focuses on anaerobic digestion. This project consists of the degradation of organic matter by microorganisms, always without oxygen, which on the one hand generates biogas, a methane and CO2 rich gas with high energy values, and digestate, on the other, a solid component that can be used as compost or a supplement to remediate degraded soil after composting”, clarified Paloma Mingo.

“The project has two distinct phases. As for the microorganism identification phase, we have spent the past 12 months taking samples in one of the digestors, which performs thermophilic anaerobic digestion, and is located in an eco-park in La Rioja, in a facility run by Sacyr Circular. All the samples were taken from the same digestor to assess how they evolve in time, by extracting DNA from all the samples taken over time. The results are promising, but they also give us a glimpse of how complex the ecosystem in the digestors is”, concluded Juan Pablo Antillera. 
 

 

Tunnel 4.0

 

Lastly, to conclude the session, Pablo García del Campo, technical director of Cavosa, and Miguel Martín Cano, Manager of innovation projects and knowledge of Sacyr Engineering and Infrastructures, spoke about Tunnel 4.0, an inititative that aims to improve the tunnel construction process through four action lines: use of live voice and data technology through tunnel lighting, machine sensorization for predictive analysis and machine monitorization, the development of real-time of excavation positioning; development of web applications to automate calculations.

Pablo García del Campo spoke of excavation control: “We’d noticed that workers couldn’t see properly while they were excavating. Without a reference, and even if they had it, they needed to wait for topographers to give the indications, which delayed works. Project Tunnel 4.0 was created to improve this process by creating a Google Maps of sorts, for the excavation equipment. This way, workers can see what their position is at any given time”.

According to Miguel Martín, one of the most dangerous and complicated tasks for geologists is to detect fissures in an excavation. “We have developed a browser and mobile app to help us recognize the majority of parameters, automate calculations and increase personnel safety. Thanks to this program, just by taking a picture, we can apply a series of filters able to define, detail and measure fissures and their size to preemptively detect them”. 

  • Tunnels
  • Waste management
  • reverse osmosis
  • Water

Orange peels to produce biofuel 

The need to manage waste and its valuation raises the opportunity for promising environmental projects, like FUELCAM, by the Universidad Politécnica de Madrid and the Universidad de Castilla la Mancha, focused on the use of hydrogenated terpenes.

The need to manage waste and its valuation raises the opportunity for promising environmental projects, like FUELCAM, by the Universidad Politécnica de Madrid and the Universidad de Castilla la Mancha, focused on the use of hydrogenated terpenes to create biofuel from orange peels or pine tree resin.

“This project originated five years ago to revalorize waste in the Castilla La Mancha region”, explains Magín Lapuerta, a professor at the Universidad de Castilla – La Mancha, where he coordinates the Grupo de Combustibles y Motores (GCM-UCLM) and assesses the Committee for the European norms on fuel. 

“The first part of this job involved working with turpentine, a terpene distilled from pine tree resin, that is after subject to hydrogenation, so that it won’t produce black smoke at combustion”, explains Lapuerta.
Then, it was the turn for orange peels, a readily available material since it is a byproduct that is not used by coopearatives and farmers. 

This project stems from David Donoso’s thesis. David is a researcher at the ETS de Ingeniería Industrial de la UCLM, that comprises three research lines with three different raw materials, the three of them terpenos hidrogenados: turpentine, hydrogenated orange oil and CST, which is sulfate turpentine, a paper industry byproduct.

“Our research confirms that fully hydrogenating fuel allows to reduce soot by 55%”, says David Donoso.
 

 

 

Turpentine isn’t really a byproduct. It’s extracted from pine trees, and it’s mainly used to produce substances like turpentine spirits. While its extraction would have major impact on the pine tree industry and have applications to prevent fires, this research line doesn’t show much promise.

For that reason, they focused on CST and orange peels. “The research to create fuel was done with a reactor at the Universidad Politécnica de Madrid. We created enough to burn it with an engine”, explains Lapuerta.

The fuel was tested at Castilla La Mancha mixed with diesel fuel.  In the test formulas, 20% is hydogenated turpentine or hydrogenated orange oil, and 80% is diesel. 

 “The percentage of biofuel could be raised. We give added value with the hydrogenation”, researchers say. It could also be tested in gas engines. 

“Now we need to take the leap on an industrial scale, by testing biofuels mixed with JetA1 in aircraft turbines”, explains José Laureano Canoira López, professor at the Chemical engineering area of the Universidad Politécnica de Madrid (UPM).

 

 

“We still need to find turbines to test out these results in the aviation industry. We need a refinery or biorefinery company willing to hydrogenate the materials for us and prepare a large amount to start testing on real planes”, researchers say.

However, there is a major gap that seems tough to close. In order to test out efficiently they would need to produce at least 100 liters, but for fuel companies to find the operation profitable, they would need to produce at least 1,000 liters and take the risk.

The  ASTM (American Society for Testing and Materials) lays down the possibility of using from 10% to 50% of biofuels in aviation, as long as they meet the requirements.

There are other research lines with potential. There are other types of terpene waste, such as biowaste from parks and gardens maintenance, mostly leaves, which could also be used to make biofuels. 

  • Biofuel

This website uses its own and third-party cookies to improve the user experience and analyze their behavior in order to improve the service offered.
You can consult additional information about the cookies installed on our Cookies policy.

Cookie Settings

Cookie declaration

TECHNIQUES

These cookies are exempt from compliance with article 22.2 of the LSSI in accordance with the recommendations indicated by the European authority on privacy and cookies. In accordance with the above and although configuration, acceptance or denial is not possible, the editor of this website offers information about them in an exercise of transparency with the user.

  • Name: LFR_Session_STATE_*, Provider: Liferay, Purpose: Manages the session as a registered user , Expiration: Session, Type: HTTP

  • Name: GUEST_LANGUAGE_ID, Provider: Liferay, Purpose: Determines the language with which you access , to show the same in the next session, Expiration: 1 year, Type: HTTP

  • Name: ANONYMOUS_USER_ID, Provider: Liferay, Purpose: Manages the session as an unregistered user , Expiration: 1 year, Type: HTTP

  • Name: COOKIE_SUPPORT, Provider: Liferay, Purpose: Identifies that the use of cookies for the operation of the portal, Expiration: 1 year, Type: HTTP

  • Name: JSessionID, Provider: Liferay, Purpose: Manages login and indicates who is using the site, Expiry: Session, Type: HTTP

  • Name: SACYRGDPR, Supplier: Sacyr, Purpose: Used to manage the cookie policy , Expiration: Session, Type: HTTP